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Abstract
The influence of point defects on the dielectric susceptibility as observed on
Sr1−xCaxTiO3 with x � 0.007 is described within the framework of two
microscopic models. While the ‘soft impurity oscillator model’ readily explains
the induced lattice softening at low concentrations, an adequate description
of the ferroelectric instability and nonlinear dielectric behaviour requires
dominance of a ‘mode coupling model’ at higher concentrations. It involves
the soft-mode and tunnelling ions, whose appearance is explained within a
percolation approach.

1. Introduction

Quantum paraelectrics like SrTiO3 and KTaO3 are known to remain in the paraelectric state
even at zero temperature as a consequence of zero-point quantum vibrations of their ions [1].
These vibrations suppress the ferroelectric phase transition although, from the point of view of
classic thermodynamics, it should appear at T = 0. It is known that uniaxial stress [2] or small
additions of impurities [3–5] can trigger the phase transition into a long-range ordered state.
In the present paper we consider the case of solid solutions of Sr1−xCaxTiO3, x � 1 (SCT for
short). The dielectric properties of these solid solutions have been studied in several papers
[3–5]. In the low-x limit it was found that the Ca impurities drastically increase the dielectric
susceptibility, although the phase transition does not yet appear. This feature is satisfactorily
explained within the framework of a ‘soft impurity oscillator model’, which will be developed
in this paper first.

The obvious failure of this model to describe correctly the ferroelectric instability and
the electric field dependence of the dielectric susceptibility [5] then forces us to extend our
treatment towards a ‘mode coupling model’, which involves the soft-mode and tunnelling polar
impurities. When fitting this model to experimental data, very large electric dipole moments
are encountered, which cannot be attributed to single Ca2+ impurities. Obviously clustering
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takes place, which is described within a percolation approach by considering random site
distribution and temperature dependent correlation radii.

It will be shown that the two models proposed in this paper are not mutually exclusive.
On the contrary, they are complementary in the following sense. Isolated Ca2+ ions substituted
at Sr2+ sites at low concentrations probably lack dipolar properties to a large extent, since
their off-centrality is very small in view of the minute differences in ionic radii. However,
at high enough Ca2+ concentrations interactions between the impurities break their spherical
symmetry. Finite dipole moments are thus induced, which give rise to mode coupling effects.

2. Theory

2.1. Soft impurity oscillator model

We start with the standard Hamiltonian [6] describing a set of linearly coupled harmonic
oscillators

Hharm = 1

2

∑
ni

Miω
2
i x

2
ni +

1

2

∑
ni �=mj

υni,mjxnixmj . (1)

Here ωi , xni and Mi are the eigenfrequency, atomic displacement and atomic mass for the ith
ion in the unit cell, respectively. υni,mj is the spring constant coupling the displacements xni
and xmj of different ions. After finding the eigenvalues of this Hamiltonian, ωki , it can be
written as

Hharm = 1

2

∑
ki

ω2
kiykiy−ki . (2)

Here yki is the normal displacement in the ith vibration mode. We add to this Hamiltonian an
anharmonic part, which is responsible for the temperature dependence of the soft mode

H = Hharm +
1

4

∑
k1i1,k2i2,k3i3,k4i4

V (k1,k2,k3,k4)xk1i1xk2i2xk3i3xk4i4 (3)

In the self-consistent phonon approximation [7] the free energy density corresponding to this
Hamiltonian can be represented in the form of a Landau–Devonshire expansion,

F = F0 + 1
2α(T )P

2 + 1
4bP

4 (4)

where

α(T ) = α0 + A
∑
ki

c2
ki

ωki

(
coth

h̄ωki

2kBT
− 1

)
. (5)

Here α0 is determined by the harmonic contribution to the Hamiltonian, A is a constant which
is proportional to the anharmonicity constant and c2

ki is the weight of the critical mode in the
phonon mode with frequency ωki referring to the wavevector k and the branch i. Note that in
equation (4) only electric non-linearity terms are taken into account, while terms connected
with stresses are neglected.

So far we have described the Hamiltonian of the perfect crystal. In a crystal with
imperfections, e.g. SCT, we assume that the point defects have modified squared eigen-
frequencies, say ω2

Ca instead of ω2
Sr . The difference between these squared frequencies will

be called � = ω2
Sr −ω2

Ca . Thus the corresponding change of the free energy can be estimated
from the first order correction

�F = 〈�H 〉 = −1

2
n1�〈x2

Ca〉 = −1

2
n1�σCa(T ) − 1

2
n1�〈xCa〉2

= �F0(T ) − 1

2
n1
�c2

Ca

z2
c

P 2 (6)
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where σ(T ) is the variance of the Ca coordinate; n1 is the volume impurity concentration;
c2
Ca is the weight of the Ca2+ ion in the soft mode and zc is the charge corresponding to the

critical mode. Corrections of higher than quadratic order are neglected, since fluctuations
of the polarization are small in the paraelectric phase. This is e.g. evidenced by the parallel
T dependence of the susceptibility for x = 0 and 0.002 (figure 2). Finally, one obtains the
following form of the free energy:

F ′ = F ′
0 + 1

2 (α(T ) − "n1)P
2 + 1

4bP
4 − EP (7)

where F ′
0 = F0 + �F0 and " = �c2

Ca/z
2
c . It is seen that the impurity contribution to the free

energy varies linearly with n1. The coefficient ", which couples the squared polarization to
the concentration of the impurities, is temperature independent. This result corresponds to a
previous phenomenological consideration of Hayward and Salje [8].

Experimentally the temperature and concentration dependence of the free energy can be
obtained from measurements of the dielectric susceptibility data, which should be compared
to that calculated from equation (7),

χ = 1

ε0

∂P

∂E
= 1

ε0

1

α(T ) + 3bP 2 − "n1
. (8)

It is seen from this expression that the impurities can give rise to a divergence of the dielectric
susceptibility and, hence, to a phase transition. We should notice, however, that the impurities
can no longer be considered as being non-interacting in the vicinity of the phase transition.
Hence, equation (8) will hold only when the interaction radius between the impurities is smaller
than their average distance.

In order to evidence, as suggested by equation (5), that the measured dielectric
susceptibility is really related to the soft mode frequency we have plotted the dielectric
susceptibility [9] together with the reverse squared soft mode frequency taken from hyper-
Raman spectra [10] of SrTiO3 (figure 1). It is seen that these two curves have the same shape
thus justifying our assumptions. It should be noticed that, owing to the tetragonal symmetry
of SrTiO3 at T < T0 = 105 K [1], exclusively the susceptibility within the easy ab-plane,
χ11 = χ22 = χ , is considered. Assuming equal coupling A, of all lattice modes to α(T ) in
equation (5), the susceptibility being determined by the squared inverse soft mode frequencies
[11] will refer to the optic branches with lowest energy, A1u and Eu. Hence, when plotting
the graph we used the expression ω−2 = (ω−2

1 + 2ω−2
2 )/3 in order to describe the dielectric

response of the lattice rather than the average ω2 = (ω2
1 + 2ω2

2)/3 as proposed previously [10].
Here ω2

1 and ω2
2 correspond to the A1u and Eu vibrational frequencies, respectively.

Figure 2 shows the reverse dielectric susceptibility of pure SrTiO3 and SCT with x = 0.002
[5, 9]. The fact that the curves are nearly parallel confirms the predicted dependence of the
susceptibility on the impurity concentration at small concentration.

In order to study the concentrational phase diagram one can use the approximate
expressions [12]

α(T ) =
{
A(T 2 − T 2

c0) θ > T > Tc

B(T − T0) T > θ
(9)

which, in turn, imply the renormalized Curie temperature to depend on n1 as

Tc =
{
C

√
n1 − nc1 θ > Tc

D(n1 − nc0) TC > θ .
(10)

Here nc1 and nc0 are the critical concentrations in the quantum and in the classical approaches,
respectively, where nc1 > nc0. θ is the temperature at which the classical behaviour is
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Figure 1. Temperature dependence of the in-plane dielectric susceptibility [9] (solid line) and
squared inverse soft-mode frequency, 1/ω2 [10], of pure SrTiO3 (solid circles; normalized to the
χ ′ data).
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Figure 2. Temperature dependence of the inverse in-plane dielectric susceptibility [9] of pure
(x = 0) and Ca doped (x = 0.002) single domained tetragonal SrTiO3. Open circles denote
parallel shifted x = 0 data best-fitted to the x = 0.002 ones.

substituted by the quantum mechanical one, whileTc0 andT0 are the critical and the extrapolated
Curie temperatures, respectively. Such a transition between these two regimes has indeed been
observed in experiments on SCT in the low-concentration limit, x � 0.002 [3].

The above model of soft impurity oscillators can also explain the influence of the oxygen
vacancies on the phonon spectrum. Due to the well known [13] high polarizability of O2−, loss
of an oxygen ion from the lattice implies a decrease of the polarizability for the corresponding
site. Again, equation (8) will hold in this case when using a negative coupling constant, " < 0.
Thus the oxygen vacancies decrease the dielectric susceptibility while hardening the soft mode.
This finding is in good agreement with the experimental data on Raman spectroscopy applied
to reduced KTaO3 [14], recent experimental findings in SrTiO3 thin films [15] as well as with
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theoretical studies considering stresses appearing at the oxygen vacancies [16]. It should be
remarked that polarons might contribute to χ as well [17], if the vacancies are not completely
compensated by acceptors. Fortunately, polarons are usually recognized by changes of the
sample’s optical absorption (colour), luminescence and electric resistivity, all of which are
assumed negligible in SCT.

A crucial test of the validity of equation (8) is provided by its comparison with the field
dependence of the susceptibility, χ against E at constant T . To this end we have to insert the
field-induced polarization

P = (((a/3b)3 + (E/2b)2)1/2 + E/2b)1/3 − (((a/3b)3 + (E/2b)2)1/2 − E/2b)1/3 (11)

as calculated from the equation of state

E = aP + bP 3 (12)

where a = α(T ) − "n1.
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Figure 3. Normalized electric field dependences for various temperatures of the in-plane dielectric
susceptibility [9] of SCT with x = 0.002 compared to best fits to equation (8) after insertion of
equation (11).

Figure 3 shows experimental data obtained on SCT with x = 0.002 at T = 4.4, 10 and
22 K together with best fits to equation (8) after insertion of equation (11). It is seen that
these fits are quite poor for T � 10 K, where they fail to model the flat tails of χ ′(E) at
fields exceeding E ≈ 20 kV m−1. Inspection of the shape of these isotherms suggests them
to contain two different contributions, a rapidly decaying one at low E values and second one
saturating only at very high fields. Previously [4, 18] we described such behaviour empirically
by superimposing cluster contributions with rapidly saturating Langevin-type field response
to a conventional non-linear lattice background. This idea is revisited in section 2.2 within
the framework of a mode coupling approach, the principle of which was outlined previously
[5, 18].
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2.2. Mode coupling model

Let us consider a Hamiltonian describing the critical mode of the host lattice and a set of
tunnelling ions, which mimic those Ca2+ ions possessing a local dipole moment:

H = 1

2

∑
k

ω2
kyky−k +

1

4

∑
k1,k2,k3,k4

V (k1,k2,k3,k4)yk1yk2yk3yk4

−E
∑
i

zixi − n2-
∑
i

Sxi − 1

2
n2

∑
i �=j

Jij S
z
i S

z
j

−n2

∑
ij

λij xiS
z
j − 2µn2E

∑
i

Szi . (13)

In this expression the impurities with volume concentration n2 are described within the
framework of the transverse Ising model [11] (by using pseudo-spin components Sx,zi , spin–
spin interaction J0 = ∑

j Jij , the tunnelling integral - and the electric dipole moment
associated with the spins µ) and bilinear coupling (strength λ = ∑

j λij ) between the soft
mode displacement xi with effective charges zi and pseudo-spin component Szj [5, 18].

At first the displacements and spin coordinates are considered to be mutually independent
and then we introduce the interaction term from a first order perturbation approach. The free
energy expansions for the polarization referring to the soft mode and to the dipoles, Fsm and
Fdip, respectively, are

Fsm = F0 + 1
2α(T )P

2
0 + 1

4bP
4
0 − P0(E + n2λ〈Sz〉) (14)

Fdip = −kBT ln

[
2 cosh

(
W

2kBT

)]
+

1

2
J0〈Sz〉2 (15)

where W = √
-2 + W 2

z and Wz = 2µE + J0〈Sz〉 + λP0. Note that α(T ) as defined by
equation (5) has the same meaning as in the soft mode model of section 2.1. It designates
the reverse dielectric permittivity of the host lattice, which refers to the unperturbed crystal
without point defects. While in the soft mode picture the s-type impurities simply subtract a
constant from α(T ), the dipolar impurities subtract a constant divided by T . P0 is the part of
the polarization referring to the soft mode, and P1 = 2µn2〈Sz〉 is that due to the tunnelling
ions. In equation (15) the average field is replaced by the local field at the impurity sites, which
accounts for the interaction of the impurities with the average polarization. For similar reasons,
the average field in the free energy describing the soft mode, equation (14), is substituted by the
local field produced by the external field and the defects. The existence of a large difference
between the local and average fields in perovskites is well known [19–21].

By differentiating (14) and (15) with respect to P0 and 〈Sz〉, respectively, one obtains

(α(T ) + bP 2
0 )P0 − λ

2µ
P1 = E (16)

〈Sz〉 = Wz

2W
tanh

W

2kBT
. (17)

In order to find the dielectric susceptibility we take the derivatives with respect to E:

(α(T ) + 3bP 2
0 )(P0)

′
E − λ

2µ
(P1)

′
E = 1 (18)

〈Sz〉′ = G(E)[2µ + λ(P0)
′] (19)

with

G(E) = f ′
Wz

1 − J0f
′
Wz

f ′
Wz

= -2

2W 3
tanh

W

2kBT
+

1

kBT

W 2
z

4W 2

(
1 − tanh2 W

2kBT

)
(20)
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where fWz
= (Wz/2W) tanh(W/2kBT ). From equations (18) and (19) one easily obtains the

soft mode susceptibility

ε0χ0 = (P0)
′ = 1 + 2λn2µG(E)

α(T ) + 3bP 2
0 − λ2n2G(E)

. (21)

At low impurity concentrations one may neglect J0 in equation (20), since a large distance
separates the impurities. In zero field and at temperatures larger than -/kB one obtains
G ≈ 1/kBT . Hence the impurity correction of the susceptibility vanishes at large temperatures.
It implies that this correction is important only at comparatively small temperatures. Obviously
this correction leads to softening the critical mode.

The contribution to the dielectric susceptibility originating from the dipole impurities is

ε0χ1 = 2µn2〈Sz〉′ = 2µn2G(E)
2µ + λ(α(T ) + 3bP 2

0 )
−1

1 − λ2n2G(E)(α(T ) + 3bP 2
0 )

−1
. (22)

From the denominator in equation (22) it is seen that the interaction of the impurities with
the soft mode strongly enhances the polarizability connected with the dipole impurities. It
is particularly large in paraelectrics close to the ferroelectric phase transition, because, at
T → Tc, α(T ) → 0, as discussed previously by Vugmeister and Glinchuk [22].

Finally, by summing both contributions the general expression may be derived:

χ = χ0 + χ1 = 1

ε0

1 + 4λn2µG(E) + 4µ2n2G(E)(α(T ) + 3bP 2
0 )

α(T ) + 3bP 2
0 − λ2n2G(E)

. (23)

It follows from this expression that the soft mode and spin coordinates influence each other
rather strongly near to the ferroelectric phase transition. Only when the soft mode frequency
is not too low is it possible to separate these contributions to the dielectric susceptibility.

In order to evaluate equation (23) we consider simplifications. We neglect both the
interaction, J0 = 0, which appears reasonable in the low impurity concentration limit, and
tunnelling of the dipoles, - = 0, thus anticipating the fact that the dipoles are of mesoscopic
size due to statistical clustering (see section 2.3). Equations (16)–(20) are then reduced to

G(E) = 1

4kBT

(
1 − tanh2 2µE + λP0

2kBT

)
(24)

[α(T ) + bP 2
0 ]P0 − 1

2
λn2 tanh

2µE + λP0

2kBT
= E. (25)

Equation (25) implies that the impurity contribution to the susceptibility yields some effective
dependences of the linear susceptibility and the non-linearity constant on both electric field
and temperature. However, it is not advised to expand the dipole contribution into a series, in
the same way as the contribution originating from the host lattice. As mentioned above this
procedure fails already for intermediate electric fields due to the strong non-linearity of the
tanh function.

Figure 4 shows the comparison between the experimental results of χ−1 against T for SCT
with x = 0.07 in zero external field, hence, P0 = 0 at T > Tc ≈ 18 K [23], and the best fit to
equation (23) in connection with equation (24),G(E) = 1/(4kBT ), using λ = 8×10−21 V m2.
Quantitative agreement is observed for 24 < T < 60 K. However, as will be shown below this
value of λ is much too small. Better agreement between theory and experiment is obtained
with a realistic value of λ. It is two orders of magnitude larger while assuming that only a part
of the Ca impurities are in the dipole state. Within a percolation approach it will be shown
that this part depends on temperature. Figure 5 shows the tendency in the dependence of the
reverse susceptibility on the concentration n2. Obviously, the slope of the reverse susceptibility
increases when the concentration is enlarged.
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Figure 4. Temperature dependence of the inverse dielectric in-plane susceptibility [9] of SCT with
x = 0.007 best-fitted to equation (23) for P = 0 and E = 0 at T > Tc = 18 K.

0 20 40 60
0.0

1.0

2.0

3.0
SCT   x=0.003 - 0.018

1
/ χ

T [K]

Figure 5. Temperature dependence of the inverse dielectric in-plane susceptibility [9] calculated
from equation (23) for P = 0 and E = 0 with the best-fit parameters obtained for SCT with
x = 0.007 (figure 4) for various impurity concentrations, x = 0.003–0.018.

Figure 6 (dashed curve) shows the result of fitting equation (23) to the experimental data
[23] χ ′ against E (circles) on SCT with x = 0.007 at T = 20 K. To this end equations (24)
and (25) have been solved and inserted self-consistently. When keeping the dipole moment at
the fixed value µ = 10−30 mC, which corresponds to a displacement of the Ca2+ ion by 5 pm,
we obtain the best-fit parameters b = 2.0×1010 J m5 C−4 and λ = 8×10−21 V m2. The latter
value was also found from the best fit of χ against T (figure 4; see above), where we have
already mentioned above that it appears too small. Moreover it does not change appreciably,
if one enlarges µ a few times.

The fit can be improved, if one assumes that only a part of the Ca ions has a dipole
moment. Probably this is just that part which forms the clusters introduced previously [5, 9]
(see also section 2.3). The remaining Ca ions are assumed to influence the susceptibility as
soft oscillator impurities as described in section 2.1. To this end one may simply replace the
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Figure 6. Electric field dependence of the dielectric in-plane susceptibility of SCT with x = 0.007
(solid circles [9]) best-fitted to equations (23) and (26) (dashed and solid curves, respectively; see
text).

value of α(T ) obtained for pure SrTiO3 by the value α(T )−"n1 where n1 is the concentration
of the Ca ions in the non-dipolar state. One finally obtains

χ = 1

ε0

1 + 4λ(n2 + n20)µG(E) + 4µ2(n2 + n20)G(E)(α(T ) − "(n1 + n10) + 3bP 2
0 )

α(T ) − "(n1 + n10)1 + 3bP 2
0 − λ2(n2 + n20)G(E)

(26)

where n10 and n20 are the concentrations of monopole and dipole-type impurities in the
nominally pure sample, while n1 and n2 refer to the Ca doping in SCT. For sake of
simplicity universal coupling constants " and λ are assumed for both kinds of impurity.
Figure 6 (solid curve) shows the best fit of equation (26) to χ ′ against T under this
assumption. It is seen that this fit is much better than the previous one (dashed curve)
when choosing b = 1.27 × 1010 J m5 C−4, n2 + n20 = 8.74 × 10−6 per unit cell volume,
χ0 = [ε0(α(20 K) − "(n1 + n10))]−1 = 2.5 × 104 and µ = 1.47 × 10−29 C m. The value of
the coupling constant, λ ≈ 1.11 × 10−19 V m2, was found from the expression λ = γµ/3ε0,
where 1/3ε0 is the Lorentz correction coefficient, which signifies the difference between the
local and average fields in the simple cubic lattice. γ gives the correction for the local field in
the perovskite-type lattice. Here we adopted the value γ = 0.2 of the Li site in KTaO3 [20] to
the Ca site in SrTiO3.

Our fit shows that only a comparatively small part of the Ca ions are in the dipole
state, while the value of the dipoles appears considerably enhanced. However, instead of
conjecturing enhanced off-centre displacements of the Ca ion (d = 46 pm, if q = 2e),
we rather suppose that groups of Ca ions form clusters, which are strongly correlated and
collectively influence the lattice dynamics. Section 2.3 is devoted to finding reasons for such
a type of clustering.

Here we would like to stress that the main reason for the rather steep decay of the dielectric
susceptibility in weak electric fields is the interaction of the soft mode with the dipoles. The shift
of the squared soft-mode frequency is electric field dependent due to the strong non-linearity in
the dipole subsystem. This is seen from the denominator in equation (21), which contains the
strong dependence ofG onE. At largeE the value ofG vanishes and practically only the lattice
is responsible for the dynamics. However at intermediate electric fields,E ≈ 10 kV m−1, giant
influence of the dipoles is encountered. Probably their influence has to be taken into account
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even for nominally pure samples, since we have found above that a cluster concentration of
about 10−5 per unit cell has already a drastic influence on the lattice dynamics.

Equation (23) does not account for dynamic effects. Indeed the frequency dispersion of
the permittivity of SCT is weak above Tc [9]. This might be different in other systems and
can be accounted for within the framework of the kinetic equation of the dipoles [7] (see
appendix A).

2.3. Cluster formation in SCT

In order to study the possible nature of the cluster formation in SCT we employed a percolation-
type technique [24]. We consider the Ca ions to be surrounded by spheres of the correlation
radius rc = ρ

√
χ . The constant ρ was determined for pure SrTiO3 from the correlation

radius, rc = 2.4 nm, obtained from the phonon spectrum of SrTiO3 at low T [25]. As
the dielectric susceptibility is temperature dependent the correlation radius proves to be
temperature dependent too.

By using a random number generator we distributed the Ca2+ impurities over the lattice
sites in cubes of size 4803 for x = 0.002 and 1203 for x = 0.007. Weakly correlated clusters
were defined by the condition of mutual intersection of individual correlation spheres, r � rc,
where 2r is the distance between two Ca impurities. Alternatively, strongly correlated clusters
were defined in the same way, however, by reducing the correlation radius considerably, r � rc.
When choosing r = 0.02rc the percolation threshold appears just at the temperature of the
phase transition for x = 0.007 (see below). For each realization of the impurity distribution
we computed the average size of the cluster defined by [26]

〈S〉 =
∑
i

siwi =
∑
i

sisi

( ∑
j

sj

)−1

=
( ∑

i

s2
i

)( ∑
i

si

)−1

. (27)

Here si is the number of impurities in the ith cluster. The connected cluster, containing the
number of sinf impurities, spreads from one side (say from the bottom of the cube) to the
opposite one and defines the order parameter Pinf = sinf /

∑
i si .

Figures 7(a) and (b) show the results of the computation of the order parameter Pinf and
the average cluster size 〈S〉 after ensemble averaging over 103 realizations. The data have,
hence, a relative accuracy not worse than 10−3. It is seen that both the onset temperatures
of long-range order for weakly correlated clusters (curves labelled as 1), viz. Pinf > 0 at
Tc(x = 0.002) ≈ 15 K, Tc(x = 0.007) ≈ 120 K (solid lines) and the peak temperatures of
cluster sizes (〈S〉max ; dashed lines) are much too high when compared to the measured ones [5]
Tc(x = 0.002) ≈ 0 K, Tc(x = 0.007) ≈ 18 K. However, those referring to strongly correlated
clusters for x = 0.007 (curves labelled as 2 in figure 7(b)) meet exactly the experimental
experience, while for x = 0.002 the threshold is completely absent. It implies that clustering
appears only at the comparatively large Ca concentration, x = 0.007 whereas it is practically
absent for x = 0.002. It should be noticed that the final criterion for a global phase transition
is provided by the vanishing of the denominator in equation (26).

It should be noticed that spontaneous symmetry breaking of the impurities has tacitly
been assumed within the correlated clusters, although they might consist of centrosymmetric
soft impurities. In this case an interaction mechanism has to be found explaining the global
symmetry breaking. This is attempted in appendix B by assuming linear coupling between
nearby anharmonic oscillators.

In conclusion we like to stress that the two models presented in this paper must
very probably not considered as alternative solutions, but as complementary ones. Both
contributions to the dielectric behaviour of SCT are believed to contribute simultaneously,
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Figure 7. Temperature dependences of average cluster size 〈S〉 (broken curves) and order parameter
Pinf (solid curves) in SCT with x = 0.002 (a) and 0.007 (b) for weakly (curves 1) and strongly
correlated clusters (curves 2 in (b)), respectively (see text).

those stemming from dipoles and those from soft oscillators. Isolated Ca2+ ions substituted at
Sr2+ sites are certainly not rigid dipolar entities owing to the low trapping potential of possible
off-centre configurations. This changes at high enough Ca2+ concentrations, where mutual
interaction breaks the spherical symmetry of the impurities and finite dipole moments are
induced as shown in appendix B.

3. Conclusion

We have developed a theory of dielectric response of quantum paraelectric SrTiO3 doped with
Ca. The impurities are thought to be in two possible states, dipole and monopole. While the
monopole impurities soften the ferroelectric soft mode due to lower spring constants of the
Ca–O bonds when compared to those of Sr–O, the dipole-type Ca impurities give rise to further
softening of the lattice modes through local field effects. These result in coupling of the dipole
coordinates to the soft mode displacement. According to numerical analysis of experimental
data for SCT with x = 0.007 the number of dipolar impurities is relatively low, but it grows
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with decreasing temperature. This complies with the idea that groups of Ca impurities are
forming dipolar clusters, whenever their correlation spheres mutually overlap. Percolation
model computations are in rough agreement with such a supposition.

We have stressed that the small fraction of dipolar Ca impurities saturates at relatively
weak electric field. Hence, their contribution to the dielectric susceptibility rapidly vanishes
when increasing E. Owing to its quantum nature this part of the response function cannot be
described by a low-order series expansion. This explains the previous failure of describing χ

against E in the conventional way. Very probably this dipolar contribution is also responsible
for the well known relaxor properties of SCT [5]. Indeed, only a small subsystem of the
crystal seems to be responsible for polydispersivity, one of the main characteristics of the
relaxor system. E.g. in SCT with x = 0.002 only about 5% of the low-T dielectric response at
E = 0 is polydispersive at low frequencies [27]. It will be left as a task for the future to develop
a deeper understanding of the dynamics of this subsystem. As mentioned previously [26], a
correlated domain model [28] might provide an adequate description. A first step towards a
microscopic description is proposed in appendix A.

In conclusion we would like to stress that the two models presented in this paper must
very probably not considered as alternative solutions, but as complementary ones. Both
contributions to the dielectric behaviour of SCT are believed to contribute simultaneously,
those stemming from dipoles and those from soft oscillators. Isolated Ca2+ ions substituted
at Sr2+ sites are certainly not dipolar entities owing to the low trapping potential of possible
off-centre configurations. This changes at high enough Ca2+ concentrations, where mutual
interaction breaks the spherical symmetry of the impurities and finite dipole moments are
induced as shown in appendix B.
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Appendix A. Dispersion of the dielectric susceptibility

The final expression, equation (23), of the susceptibility does not take into account dispersion
effects, since we know from the experiment that they are weak above Tc. However for the
sake of generality and in order to make our expression applicable to materials with noticeable
dispersion, an appropriate expression will be derived here.

The starting point for our derivation is the kinetic equation of the dipoles [7]

ih̄
dρd
dt

= [Hdρd ] − ih̄

τ
(ρd − ρd) (A.1)

where ρd is the density matrix for the dipole subsystem, ρd is the statistically averaged density
matrix for each value of the local field, τ is the relaxation time and Hd is the part of the
Hamiltonian (13) connected with the dipoles. After carrying out the Fourier transformation one
obtains a final expression for the dielectric susceptibility, which has the form of equation (23)
with G(E) defined by (20) but with a new expression for f ′

Wz
,

f ′
Wz

= 1

(1 + iωτ)

{
-2

2W 3
tanh

W

2kBT
+

W 2
z

4W 2kBT

1

cosh2(W/2kBT )

}
. (A.2)

In comparison with equation (20) it is seen that the only new feature is a factor depending
on frequency and standing in front of the brackets. This result generalizes also an expression
derived in [29] by taking into account tunnelling, inter-dipole interactions and polarization.
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Appendix B. Symmetry breaking in soft impurity pairs

In our percolation treatment we assumed that the soft impurities being close each other are
symmetry broken. Hence, these impurities have dipole moments, which are strongly correlated
within the cluster as expressed by the term ‘cut-off radius’. However, the thermodynamics of
symmetry breaking needs to be clarified. Here we show how a model recently proposed by
Perez-Mato and Salje [30] might be applied to this situation.

We start with a two-impurity Hamiltonian

H = p2
1

2M
+
Mω2

0

2
x2

1 +
p2

2

2M
+
Mω2

0

2
x2

2 +
1

4
ux4

1 +
1

4
ux4

2 − zx1E − zx2E − 1

2
υx1x2 (B.1)

with the conventional meaning of the constants involved. The trial Hamiltonian is of the form
[30]

H0 = p2
1

2M
+
Mω2

2
(x1 − x)2 +

p2
2

2M
+
Mω2

2
(x2 − x)2. (B.2)

Here x is the average displacement in the selected pair. Notice that this displacement has
nothing to do with the macroscopic order parameter, since no interactions among different
impurity pairs are involved in the considered model (they are at least weaker than those between
the paired ions).

By treating this Hamiltonian in the same manner as in [30] one obtains that symmetry
breaking appears under the condition

2Mω2
0 + 6σ(T ) − υ(R) < 0 (B.3)

where σ = (h̄/2Mω) coth(h̄ω/2kBT ) is the variance. While x = 0 above the critical
temperature (which is, in principle, different for different pairs as they are at different distances,
R), one has x2 = −(2Mω2

0 + 6σ(T ) − υ(R))/2u below Tc.
At the bifurcation point x depends on T as

√
Tc(R) − T , while it saturates at low T due to

zero-point quantum vibrations of the Ca impurities. Upon increasing the distance between the
impurities Tc(R) decreases. Hence, at a fixed temperature, there exists a largest distance,Rc, at
which the local symmetry breaking appears (T = Tc(Rc)). However, there exists a distance,
R0, beyond which symmetry breaking will never occur because of the quantum vibrations
(Tc(R0) = 0), even if 2Mω2

0 − υ(R) > 0. This happens because the quantum variance σ(T )
does not vanish at zero temperature in contrast to the classic one.
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